

Give the synthesis \alpha-terpineol.

Explain the constitution of Citral.

2	(a)	Answer the following questions:			
		(1)	Complete: Alanine $+ HNO_2 \rightarrow$		
		(2)	Write the structure of tyrosine.		
		(3)	Write the structure of hippuric acid.		
		(4)	What are essential amino acids?		
	(b)	Answer any one of the following questions:			
		(1)	Complete the following:		
			(i) Thyroxin + $H_2/Pd \rightarrow$		
			(ii) Thyroxin + $4KOH \rightarrow$		
		(2)	Write a short note on isoelectric point and Zwitter ions		
	(c)	Answer any one of the following questions:			
		(1)	Give the synthesis of glycylalanine by Sneehan Method.		
		(2)	Give the synthesis of phenylalanine by Erlenmeyer Azlactone method		
	(d)	Ans	wer any one of the following questions:	5	
		(1)	Write a short note on colour reactions of proteins.		
		(2)	Give the synthesis of Thyroxin.		
3	(a)	Answer the following questions:		4	
		(1)	Complete : Naphthalene + conc $\mathrm{H_2SO_4}$ (at 80°C) \rightarrow		
		(2)	Complete : Diphenylmethane + CrO_3 + CH_3COOH \rightarrow		
		(3)	Mass spectra is a plot of relative abundance against ratio.		
		(4)	Draw the chair conformations for mono methyl cyclohexane.		

2

[Contd...

JB-003-1016007]

	(b)	Ans	Answer any one of the following questions: 2			
		(1)	Write the reaction of diphenyl with a mixture of conc HNO_3 + conc $\mathrm{H}_2\mathrm{SO}_4$.			
		(2)	State any two conditions required for Mc Lafferty rearrangement.			
	(c)	Ans	swer any one of the following questions:	3		
		(1)	Write the chemical reaction for the synthesis of Anthracene from phthalic anhydride and benzene.			
		(2)	Write a short note on important features of Mass Spectra of alkanes.			
	(d)	Ans	Answer any one of the following questions:			
		(1)	Explain electrophilic substitution reactions of Naphthalene.			
		(2)	Explain relative energies and stability of different conformation of cyclohexane.			
4	(a)	Answer the following questions:				
		(1)	What information is obtained from intensity of PMR signal?			
		(2)	What is coupling constant?			
		(3)	What information is obtained from the value of chemical shift?			
		(4)	'C 13 is NMR active while C 12 is NMR inactive' - Why?			
JB-003-1016007]			07] 3 [Cont	td		

Give the number of PMR signals and their (1)multiplicity in methylacetate. (2)How will you distinguish between methyl formate and acetic acid by NMR spectroscopy? Answer any **one** of the following questions: 3 (c) (1)Why TMS is used as a reference compound? (2)Determine structural formula from the following data: Molecular Formula : $C_0H_{12}O$ NMR: Doublet δ 1.7 (6H) (a) (b) Septet δ 3.45 (1H) Complex δ 7.3 (5H) (c) (d) Answer any **one** of the following questions: 5 (1)Explain with a neat diagram, NMR instrumentation technique. (2)What are shielded protons and deshielded protons? Explain with suitable examples. 5 Answer the following questions: 4 (a) Give the characteristic IR absorption frequencies for $-C \equiv N$ of nitriles and >C=O of anhydrides. (2)What does the following signal in NMR spectra indicate: Singlet at δ 9.5 ppm? Give the number of PMR signals and their (3)multiplicity in Acetylacetone. Predict the NMR spectrum for tert-butylchloride. (4) JB-003-1016007] 4 [Contd...

Answer any **one** of the following questions:

(b)

- (b) Answer any one of the following questions:
- 2
- (1) Give the structural formula of the compound with molecular formula $C_6H_3F_3$ giving NMR signal : 3H triplet at δ 7.8 ppm
- (2) Give the structural formula of the following compounds giving only one NMR signal
 - (i) C_5H_{12} (ii) $C_8H_{18}O$
- (c) Answer any **one** of the following questions:

3

(1) Determine the molecular structure for the following from the given data:

Molecular formula : C_8H_6

IR Spectral Data : 3300, 3040, 2100, 1605, 1579,

 $1500, 750, 700 \text{ cm}^{-1}$

NMR Spectral Data:

- (a) Singlet δ 2.3 (1H)
- (b) Complex δ 7.4 (5H)
- (2) Determine the structural formula from the following data:

Molecular Formula : C_7H_9N

IR : $3440_{(d)}$, 3010, 2945, 2829, 1620, 1600, 1510, 1451, 1270, 810 cm⁻¹

NMR Spectral Data:

- (a) Singlet δ 2.3 (3H)
- (b) Singlet δ 1.5 (2H)
- (c) Complex δ 7.2 (4H)

- (d) Answer any **one** of the following questions:
- 5
- (1) Determine the molecular structure for the following from the given data:

Molecular formula : $C_{11}H_{16}$

IR Spectral Data: 3035, 2980, 2890, 1605, 1580,

 $1450, 1390, 1365, 834 \text{ cm}^{-1}$

NMR Spectral Data:

- (a) Singlet δ 1.0 (27.5 squares)
- (b) Singlet δ 2.8 (9.2 squares)
- (c) Complex δ 7.4 (12.4 squares)
- (2) Determine the molecular structure for the following from the data: Molecular formula : $C_8H_8O_2$ IR Spectral Data : 3400, 2950, 2880, 1605, 1715, 1450, 1304, 1065, 810 cm⁻¹
 - NMR Spectral Data:
 - (a) Singlet τ 7.7 (3H)
 - (b) Singlet τ -1.5 (1H)
 - (c) Complex τ 2.6 (4H)

Spectral Data

Infra - Red Data		
Alkene (strcteching)	-C-H	2850-2960(v)
Alkene	=C-H	3100 9200(m)
Alkyene	=C-H	329 0 -3300(s)
Aromatic	ArC-H	8010- 3 100(m)
Aromatic ring	C=C	1500-1600(v)
-		(two to three)
Alkene	>C=C<	1610-1680(v)
Alkyene	-C≡C	2100-2260(8)
Alkene (Bending)	-C-H	1340(w)
	$-C(C_{2}H_{3})_{3}$	1430-1470(m) &
	** <i>n</i>	1380-1385(s)
	$-C(CH_2)_3$	1365 (8)
Aldehyde	-C-H	2820-2000(w)&2650 2760(s)
Adehyde	C=O	1740-1720(8)
Ketone	C=O	1725-1710(s)
Carboxylic acid	C≕O	1725-17 95 (8)
Ester	C=O	1750-1730(s)
Amide	C=O	1670-1640(8)
Anhydride	C=O	1810-1860(8)&1740-1790
Alecohols, Ethers, esters	•	
Carboxylic acids, Anhydride	C-O	1300-1000(s)
Alcohols, phenols:		1000 1000(0)
Free	О•Н	40EA 9000/-14
. bonded	0·11	3650-3600(sh) 3500-3200(b)
Carboxylic acids free	0.11	3300-3200(b)
Free	O-H	3500-3650(m)
H-bonded	0-H	2500-3200(b)
amines (stretch)	N-H	, ,
Bnding	-N-H	3330-3500(m)
Nitrile	-R-H -C≡N	1640-1550(m) 2210-2280(s)
Ether	•0•	
Alkene bending H	-0.	1070-1150(s)
disulstituted Cis.		-690(s)
distinguised Cis.		
disulstituted Trans.		060 07063
, - h	l	960-970(s),
Aromatic substitution :		
Type C-H out of plane bending		
No. of adjacent H atom.		MOTORO ANIA
5		range cm 750(s) & 700(s)
4		750(8) & 700(8)
3		780 780
2		880
1 .		
		850

NMR Data: Chemical Shift

Types of proton	Chemical	shift in δ_{ppm}
Primary	R-CH ₃	0.9
Secondary	R ₂ -CH ₃	1.3
Tertiary	R ₃ -CH	1.5
Vinylic	C=C-H	4.6-5.9
Acetylinic	Cr-C-H	2.3
Aromatic	Ar-H	6-8.5
Benzylic	Ar-C-H	2.2-3
Allylic	C=C-CH ₃	1.7
Florides	H-C-F	4-4.5
Chlorides	HC-Cl	3.4
Bromides	HC-Br	2.5-4
Iodides	HC-I	2.4
Alcohols	HC-OH	3.4-4
Ethers	HC-OR	3.3-4
Esters	R-COO-CH	3.7-4.1
Acids	HC-COOH	2-2.6
Carbonyl comp.	HC-C=O	2-2.7
Adehyde	R-CHO	9-10
Hydroxylic	R-OH	1-5.5
Phenolic	Ar-OH	4-12
Carboxylic	R-COOH	10.5-12
Amino	R-NH ₂	1.5